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Abstract

We propose a new, low-cost [ault-tolerant structure for the hypercube that employs spare proces-
sors and extra links. The target of the proposed structure is to fully tolerate the first faulty node,
no mattler where it occurs, and “almost [ully” tolerale the second, meaning that the underlying hy-
percube topology can be resumed il the second faully node occurs al most localions—expectantly
92% of locations. The unique features of our structure are that (1) it utilizes the unused extra
link-ports in the processor nodes of the hypercube to obtain the proposed topology, so that mini-
mum extra hardware is needed in constructing the fault-tolerant structure and (2) the structure’s
node-degrees are low as desired—the primary and spare nodes all have node-degrees of n + 2 for
an n-dimensional hypercube. The number of spare nodes is one fourth of primary nodes. The
reconfiguration algorithm in the presence of faults is elegant and efficient. The proposed structure
also ellectively enhances the diagnosability ol the hypercube system. It is shown that the diag-
nosability of the structure is increased (o n + 2, whereas an ordinary n-dimensional hypercube
has diagnosability 7.

Index Terms—Diagnosability, Fault tolerance, Hypercubes, Interconnection networks, Re-
dundant systems.



I Introduction

The hypercube is one of the most investigated interconnection networks for multicomputer sys-
tems. It outperforms many of its counterparts in terms of regularity, computational power,
communication ability measured by such factors as internode distance, diameter, traflic density
and so on. An extensively studied topic about hypercube-structured system is its reliability—the
ability to perform its intended tasks in the presence of faulty processors. When some processor
nodes in the system become [aulty, one of the two general approaches will be taken—without or

with spare processors.

Many fault-tolerant schemes take the first approach, which is to manage to carry out the orig-
inal task without using the faulty nodes and the communication links connected to these nodes.
The reconligured network using this approach will resull in a dillerent network, i.e., an “incom-
plete” hypercube. The original underlying topology is nol preserved. While it may not allect
the computational abilities for some applications, it can be expected that its performance will be
discounted as the result of losing its original topology. Most work on hypercube tolerance concen-
trale on [ault-tolerant routing, since routing is among the most basic issues [or multicomputers.
Recent work on fault-tolerant hypercube routing includes [9], [10], [11], and [19]. In [9], a con-
cept called rouling capability was introduced, which is basically the information a node maintains
about how far it is from faulty nodes in the hypercube. A routing algorithm was presented that
makes use of routing capability to facilitate efficient fault-avoiding routing of messages. Also for
the purpose of fault-tolerant routing, Kaneko and Ito [11] proposed the notion of full reachability.
A fully reachable node is a node that can be reached by all fault-free nodes of Hamming distance
h via a path of length h. Based on nodes’ full reachability, a fault-tolerant routing algorithm was
developed, which improved the ones proposed earlier by Chiu and Wu in [10]. The safety vector
notion proposed in [19] elfectively includes faulty link informaltion and provides more accuratle in-
[ormation about the distribution of faultls in a hypercube. Each node in a hypercube is associated
with a bit vectlor, called a salfety vector, calculated by information exchange among neighboring
nodes. Routing algorithm using safety veclor was presented, so that an optimal routing between
{two nodes can be guaranteed il the kth bit of the salely veclor ol the source node is set, where k

is the Hamming distance between the source and destination nodes.

All preceding referenced schemes assume that the systems have no spare processors to replace
[aulty ones. The alternative [aull-tolerance approach is to add spare nodes and links to the orig-
inal system. When faully nodes occur, the spares will be aclivaled to replace the faully nodes in
such a way that the original Lopology can be completely preserved. Such a fault-tolerant system
is said to be strongly fault-tolerant. Although sparing the system costs more, it is a preferable
choice il the preservalion ol the original structure topology and compulational power are a crucial
consideration. In [20], Yang el al. presented an interesting strongly lault-tolerant hypercube ar-

chitecture, which is constructed by interconnecting a set of basic fault-tolerant modules (FTM’s).



Each FTM is composed of a subhypercube with a fixed number of spare nodes, links, and some
reconliguration switches. The FTM’s are interconnected in such a way thal the spare nodes can
not only replace faults in their own FTM, but can also replace the faults in other FTM’s. The
system has been shown to be robust and outperform previously proposed modular fault-tolerant
hypercube systems. However, the fault-tolerant architecture proposed in [20] needs specially fab-
ricated FTM’s. Earlier, a strong fault-tolerant scheme was proposed in [5]. But the work was
mainly concentrating on fault-tolerant meshes.

In this paper, we propose a faull-tolerant hypercube thal needs very little hardware support
and achieves satisfactory strong fault-tolerance. The uniqueness of this structure is that it makes
use ol the unused extira link-ports in the processor nodes of the hypercube to obtain the pro-
posed topology so that (1) minimum extra hardware is needed in constructing the fault-tolerant
structure, and (2) the structure’s node-degrees are very low: for an n-dimensional hypercube, the
proposed topology requires a node-degree of n + 2. In real systems using hypercube topology,
the processors are usually made with the maximum allowable link-ports for scalability. It is quite
often that not all these ports will be used in the hypercube of the system. This motivates the idea
of utilizing the unused ports to improve the system’s performance. Extra links between nodes
can be introduced. It has bee shown that such enhanced hypercubes can achieve considerable
improvements over regular hypercubes in many measurements such as mean internode distance,
diameter, trallic density [17], and diagnosability [18]. Our proposed structure takes advantage of
these “lelt-over” ports to achieve faull-tolerance. We will employ spare nodes and add intercon-
nection links via the unused extra link-ports. Since the required node-degree is 12 + 2, Ltwo extra
link-ports will be used in each node for constructing the fault-tolerant hypercube. The hardware
support for [ault-tolerance is kepl at minimuin, since the extra link-ports are previously manu-
factured. If there is one faulty node, no matter where it occurs, the hypercube topology can be
fully recovered. If two nodes become faulty, the second faulty node can be recovered with very
high probability (around 0.92).

The rest ol this paper is organized as [ollows. In Section II, we give the necessary background
and deline the terminology. In Section I1I, we [irst describe the proposed [auli-tolerant hypercube,
and then explicatle the node replacement strategy and reconliguration algorithm when [aults occur.
In Section III we also compule the system’s recoverabilily and do a briel cost analysis ol our
system, comparing its hardware requirement with other similarly conceived systems. In Section
IV, we prove that the proposed system is (n + 2)-diagnosable. We give concluding remarks in
Section V.

I Preliminaries

The n-hypercube is one of the most popular interconnection models for multicomputer systems,

where 7 is the dimension of the hypercube. Graphically speaking, an n-hypercube can be viewed



as a graph G = (V, E) such that V' consists of 2" nodes, numbered from 00---0to 11--- 1. An edge

(or link) {v;,v;} € E, where v;,v; € V, if and only if v; and v; have onlgfl one bit gifferent. The
nodes represent processors in the system, and the links represent communication channels among
processors. Thus, every node has links with exactly n other nodes. There are altogether n2»!
links. Two nodes v;,v; of an n-hypercube that have d bits different are said to have Hamming
distance d, denoted as H(v;,v;) = d. So in an n-hypercube, a link exists between v; and v; if and
only if H(v;,v;) = 1. Notice that the nodes can be numbered differently as long as the above link
regulation is obeyed. We will call n-hypercube simply n-cube for the sake of convenience. n-cube
as a topology to interconnect processors has many attractive properties. multicomputer systems
built with hypercube structure have already been commercially available for a long time. Because
of its importance for achieving high performance, the fault-tolerant computing for hypercube
structures has been the interest of many researchers [3] [4] [5] [6] [7] [13] [15] [20].

An n-cube is composed of two (1 — 1)-cubes. We call the two (n — 1)-cubes the subcubes of
the n-cube. Recursively, an n-cube is composed of 2"~* subcubes of dimension i. We represent

a subcube of dimension ¢ with notation b, ---b;11 2 - - - 2, which is composed of all nodes whose

i
most significant n — i bits are b, - - - b; 1 1. An example showing an n-cube and some of its subcubes

is given in Figure 1.
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Figure 1: A 4-cube and its subcubes.

The [ault-tolerant structure proposed in this paper employs extra nodes and links among nodes.
We call the nodes (or links) of an original n-cube primary nodes (or links), and call the extra
nodes (or links) spare nodes (or links). Sometimes we will just say primary or spare il the context
makes it clear whelther we mean nodes or links. When a primary node becomes [aulty, a spare

will be chosen to replace it, and a reconliguration, which may involve replacement ol many spare



nodes and links, will take place to restore the n-cube structure. Given the available spare nodes
and links, il a faully node can be replaced so that the original n-cube topology can be completely
restored, then the faulty node is said to be strongly tolerated. In this paper we always seek strong
tolerance of faulty nodes. Given the available spare nodes and links, if a faulty node can be
tolerated no matter where it occurs, then the current system is said to be able to fully tolerate a
fault. If a faulty node can be tolerated only when it occurs at some specific locations, then the
current system is said to partially tolerate a fault. A node location is said to be a recoverable
location if after the node’s failure, the remaining nodes (with links among them) can still form
a hypercube. Clearly, all spares are at recoverable locations because the original hypercube does
not need any of them. We define the recoverability of a system, denoted «, by

number of nodes at recoverable locations

total number of primaries and spares

For a fully tolerant system, o« = 1. When the system cannot tolerate any more fault, o = 0.
An ideal system should fully tolerate a large number of faulty nodes. But this cannot be done
without very high hardware costs. The system proposed in this paper can fully tolerate the first
faulty node, tolerate the second faulty node with very high « (expectantly approaching 0.92 as n
grows). It cannot tolerate the third faulty node.

It has been a long-standing approach [or a multicomputer system Lo diagnose the [aully proces-
sors among themselves. The first paper to propose this approach by Preparata ef al. dates
back to 1967 [14]. In their model, the self-diagnosable system is represented by a directed
graph G = (V, A), or digraph for short, in which a node v; can test all nodes v; if arrow
(v; — v;) € A. An undirected graph G = (V, E) is a special case of a digraph G = (V, A)
in which (v; — v;) € A <= (v; — v;) € A. In our hypercube system, the two connected nodes
are able to test each other directly, so the interconnection topology and testing assignment graph
are the same. The test-result will be a conclusion that the tested node is “faulty” or “fault-
free,” denoted as label 1 or 0 on the corresponding arrow. A syndrome is defined as a function
s:A—{0,1}. A subset FF C V is said to be consistent with a syndrome s if s can arise from
the circumstance that all nodes in F' are faully and all nodes in V — F are fault-[ree. For a
given syndrome s, there may be more than one subset of V' thal are consistenl with s. If this
happens, the system cannot diagnose [or syndrome s, because the [aulty-sets thal can cause s
are not unique. It is clear thatl for any system to perform sell-diagnosis, there must be some (at
least one) fault-free processors. The diagnosability is define to be a positive integer ¢ such that
if |[F| > t, the diagnosis cannot be carried out correctly. It is well-known that the diagnosability
of an n-dimensional hypercube is n [1]. For the variants of hypercube, diagnosability has been a
constant subject of research. The enhanced hypercube, for example, where there are 27! more
links than the plain hypercube, increases the diagnosability to n + 1 [18]. In this paper, we will
show that our proposed fault-tolerant hypercube increases the system’s diagnosability to n + 2.



IIT The Proposed Fault-Tolerant Hypercube Structure

A. The Basic Redundant Cube

The basic “building block™ ol the proposed fault-tolerant hypercube is a redundant 3-cube.
The 3-cube has 2 spare nodes, denoted as Sy and S1, respectively. Spare Sy has 4 links to primary
nodes 001, 010, 100 and 111. Spare S} is connected with the remaining nodes: 000, 011, 101 and
110. The two spares are connected by a link, too. Figure 2 shows the redundant 3-cube. It can
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Figure 2: A basic redundant 3-cube.

be seen that the 4 primary nodes connected to the same spare all have Hamming distance of 2
between each other, and the structure is symmetrical. If any of the 8 primaries becomes faulty,
it can be replaced by one of the spares. Without loss of generality we will assume 000 is the first
node that goes bad. (Since the structure is symmetrical, if any other node goes bad first, the
discussion is the same.) When node 000 goes faulty, spare node Sy will take up its place. The 3
(now failed) links from 000 to 001, 010 and 100 will be replaced by 3 corresponding links (rom

Sp and Lhe original topology is completely restored. See Figure 3. For the remaining 7 primaries,

00

10

000
o1

111

001

Sw
Figure 3: Reconfiguration after the first fault. The bold links represent the restored 3-cube after

000 becomes faulty.

nol every node going faully can be restored. However, 4 of them can be restored by the second

spare S1. Figure 4 shows the reconligurations after 001 or 010 or 100 or 111 becomes second [aul,



respectively.
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Figure 4: Reconlfiguration after the second fault: (a), (b), (c) and (d) give the restoration il node

001 or 010 or 100 or 111 is the second faulty node, respectively.

So for the redundant 3-cube, the [irst fault has the recoverabilily «; = 1. For the second [ault,

4 pri i 1 S
oy — prlmarles—g spare (S1) ~ 0.56

For ¢ > 3, a; = 0, i.e., the third, [ourth, ..., [aulty nodes are unrecoverable.

B. The Proposed Fault-Tolerant Structure

Using this basic redundant 3-cube, we can build up a fault-tolerant hypercube of any size in
the following way. The whole system consists of 273 basic redundant 3-cubes, where n > 3. The

basic cubes are addressed from 00---Qzzx to 11---Lzxzx. The two spares for b, sb,_4---bixzx
S—— S—

n—3 n—3
are denoted by, _3b,_4---015g and b, _3b,_4---b151. The primary nodes belween dillerent basic

cubes are connected in a regular n-cube manner. The spares are connected in a similar way:
Two spares are linked if and only if their addresses have exactly one bit different. All spares
themselves form a (n — 2)-cube. For the purpose of further enhancing recoverability, we add 4
more extra links between a basic unit’s primary nodes: Two nodes that have Hamming distance

3 are connected by an extra link. Figure 5 gives example redundant 4-cubes and 5-cubes.
Both a primary and a spare have the low node-degree of n + 2, which is a desired property.
A primary has the original n links, 1 link to a spare, and 1 extra link to a primary that is 3

Hamming distance away. A spare has 5 links within the basic cube it belongs to, and n — 3 links

to other cubes. All spares form an (n — 2)-cube by themselves.

C. The Reconfiguration Algorithm

In the worst case, the proposed fault-tolerant hypercube can recover up to 2 faulty nodes.
The pattern the 2 faults occur can be (1) both are primary nodes; (2) first primary, second



(b)
Figure 5: (a) A redundant 4-cube. (b) A redundant 5-cube in which the primary links between

basic cubes are not shown.

spare; (3) first spare, second primary. We will separately discuss the reconfiguration strategy
for each pattern. We do not discuss the trivial case, i.e., both faults are spare nodes, since no

reconfiguration is needed if no primaries are failing.
C-1. Both faulty nodes are primary nodes

Without loss of generality we can assume that node 00---0000 is the first to become faulty.

n—3
Spare 00 - - - 0.5y will replace it with the corresponding 3 links. What is more, to easily and quickly

n—3
[acililale a complete restore, all Sy spares in other cubes replace the 000 nodes even though they

are not faulty. The replaced good 000 nodes will now become spares [or the second faulty node.

We now analyze which nodes can be recovered as the second faully, and how they are recovered.

Firstly, any node whose least 3-bits are 001 or 010 or 100 or 111 can be recovered with spare
S1 in a way similar to what we showed for the basic cube. Just like in the case of first faulty, we
replace the corresponding nodes in all cubes with their Si’s, so that the recovery process is easy
and quick. Figure 6 shows an example reconfliguration after 00 - -- 0000 is the [irst faulty node and
11..-1010 is the second. It can be seen that the original topology can be completely recovered,

preserving all the computational power.

If the second faulty is a node whose least 3-bits are 011 or 101 or 110, and it does not fall in
the same basic cube as the first faulty, then the hypercube topology can still be recovered, but
in a weaker way, meaning that some direct links may have to be replaced by longer paths. Pick,
say, 11---1011 as the second faulty. (For 11---1101 or 11---1110, the discussion is similar.) The
good bul replaced 000-node will be used as the spare in the [ollowing way. Refer Lo Figure 7. The
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Figure 6: (a) Reconfiguration alter 00000 becomes faulty first. (b) Reconliguration alter 11010

becomes faully second. The bold links are aclivaled spare links. The dashed links are good but
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Figure 7: Reconliguration alter 00000, 11011 become the [irst and second [aultly node, respectively.
The light bold links are paths replacing the originally direct links 01011-00011 and 10011-00011.



3 nodes that 0l1l-node links to are 010-, 001- and 111-nodes. They are all linked to 000-node.
Therefore 000-node can replace 011-node within the basic cube. For all the cubes except that of
the first fault, the preceding replacement is carried out. In the cube of first fault, this replacement
cannot be done because the 000-node in that cube is faulty. Thus, for inter-basic-cube connections,
if the connection involves the cube of first fault, there should be a link between the 000-node in
one cube (e.g., Olzzx in Figure 7) and the 011-node in the other (00zxzz in Figure 7). The length
3 path to replace such a link is as follows:

01000 — 0157 — 00S; — 00011.
Similarly, from 10000 to 00011 we have:

10000 — 1057 — 0057 — 00011.

It can be seen that there will be a communication delay due to the second faull occurring at 011-
or 101- or 110-node.

If the second fault is a node whose least 3-bits are 000, then since its function has already been

replaced by Sy when recovering the first fault, nothing has to be done.

To summarize the preceding discussion: The [irst [aulty node can be completely recovered no
matter where it occurs, and without loss of generality it can be viewed as numbered 00 - - - 0000;
if the second fault occurs at a node (in any basic cube) whose least 3-bits are 001 or 010 or 100
or 111, it can also be completely recovered; if the second fault occurs at a node whose least 3-bits
are 011 or 101 or 110, and it does not fall in the same basic cube as the first fault, then it can
still be recovered with some communication being delayed by a factor of 3; if the second fault is
a node whose least 3-bits are 000, no recovery operation is needed. The nodes that cannot be
recovered as the second fault include Sy nodes in all basic cubes, and the 3 nodes in the basic
cube of the first fault with least three bits 011 or 101 or 110.

The recoverability of the first fault oy = 1. To calculate the recoverability for the second
fault: After the first fault is out of cousideration, the total number of nodes of the structure is
27 4+ 2.2773 _ 1. the number of nodes that cannot be recovered is 3 + 273, So, the recoverability
of the second fault,

(20 +2.2"3 - 1) - (3+2773)  9.2n73 4
on 4 2.27 3 | T10-2v 31’

Qo =

which approaches 0.9 even for a relatively small hypercube.
C-2. First fault primary, second fault spare

The operation to recover the first primary fault is the same as in C-1. We again assume that
the first fault is 00---000. Then all Sy’s have been used in recovering 00 - --000. So if the second

(spare) fault is some Sy, it cannot be recovered. If, instead, the second (spare) fault is some S7,

then no recovery operation is needed, and the original hypercube topology is completely preserved.



9.2n3 —4
The recoverability of the second fault a9 in this case is also 10 95 1

C-3. First fault spare, second fault primary

Suppose the first fault is 00---05p. No reconfiguration is needed when this occurs. But we

n—3

have lost the spare node for primary nodes 00---0000, 00---0011, 00---0101 and 00---0110.
So when one of these four nodes becomes the s%cznd fault,nit 3cannot ben chovered. "

For any 001-, 010-, 100-, or 111-node becoming the second fault, it can be recovered by replacing
it with its S, and replacing the same node in all other blocks with S1’s. In any block exceptl that
of first fault, a 000-, or 011-, or 101-, or 110-node becoming the second fault can be recovered
by replacing it with ils Sp, and replacing the same node in all other blocks, except thatl of [first
block, with Sy’s. Because 00--- 0.5y has been faulty, the replacement cannot be effected in this

n—3

block. This will result in link-delay in a handful of nodes. Suppose without loss of generality that
a 000-node in some block other than that of first fault is the second fault. Then all 000-nodes are

replaced with Sy’s except vg = 00---0000. So vy remains functioning. But it’s communication

n—3
with n — 3 neighboring Sp’s will be delayed by a factor of 3. For instance, vg’s link to 00--- 1.5y

n—3
will now be via path

Uo—>00---051—>00---1Sl—>00---150.
N—— N—— N——

n—3 n—3 n—3
The only nodes that cannot be recovered as the second fault are the 4 nodes in the block of

first fault. Hence the second fault’s recoverability

(2 +2.2"3-1)—-4 10-2"3 -5
Qg = = s
on 2.9n=3 _ 1 10-2n=3 — 1’

which approaches 1 quickly as n grows.

We now calculate the expected recoverability F(ag) for the second faulty node. Let P{A}
represent the probability for event A. Then

27 2" —1
P,, = P{first primary, second primary} = o iy I
an 2n—2
P,s = P{first primary, second spare} = o2 g I
2n—2 9on
Py, = P{first spare, second primary} = IR e TR
2n—2 2n—2__1

P, = P{first spare, second spare} = o on? "o Ton2 1

10



We have

9.2n=3 _4 10-2"3 —5

E((XQ) = (Ppp+PpS)'710_2n_3_1+(Psp+P53).10,277,—3_1
9.2n=3 _4 10-2"3 —5
= 08 —— " 4092 . —"
08 10_2%3_1“) 10-27-3 — 1

E(as9) approaches 0.92 as n grows.

D. Cost

Besides the spare nodes, the only hardware needed to construct our proposed system are extra,
links since we are supposed to make use ol the leftover link-ports previously fabricated. We will
first calculate the total number of links needed for our spared n-cube and then compare with
other fault-tolerant n-cubes. In our proposed system, all nodes are of degree n + 2, and there are
2"+2"=2 nodes in total. Thus Y,y degree(v) = (n+2)(2"+2""2). By fundamental graph theory,
for an undirected graph G = (V, E), 3,y degree(v) = 2|E|. We get |E| = (n+2)(2"+2"72)/2 =
(5n +10)2"~3. Among them, the original n-cube has n2"~! links; every basic 3-cube has another
4 “crossing” links, totaling 4 - 2"~3; the 2”2 spares form an (n — 2)-cube themselves, thus having
(n — 2)2"3 links; finally, each pair of spares in a basic 3-cube has 8 links to primaries, totaling
8- 2n73.

To see that our hardware requirement is a very modest one, let’s see what other proposed
systems need. First of all, our system needs no specially [abricaled reconfiguration switches as
were used by the systems proposed in [20] and [8]. In a comparative study in [20], it was shown that
the system of [20] requires the least number of links among similar systems. A system proposed
in [20] requires [2n(2" + p) + m2™]2" ™ links, where n is the dimension of the hypercube, m is
the dimension of FTM, and p is the number of spare nodes in each FTM. Thus, a system of [20]
with m = 3 and p = 2 has exactly the same number of nodes as ours. The total number of links
in such a system is [2n(2% + 2) + 3 - 2%]2"73 = (20n + 24)2" 3. The links our system takes are
only about one fourth of that number.

IV The Diagnosability of the Proposed Structure

In this section we will show that, in addition to its fault-tolerating capability, the proposed
structure also achieves better diagnosability than a plain hypercube. More specifically, we will
prove that the whole system’s diagnosability is increased to n + 2 for a fault-tolerant n-cube,

whereas the diagnosability of an ordinary n-cube is given in the following lemma.

Lemma 1 [1], [12] A system of n-cube structure is n-diagnosable if n > 3.

11



There are several different ways to characterize a t-diagnosable system. In our proof we will

use the characterization by Allan el al. [2] and Sullivan [16].

Definition 1 Let G = (V, E). For a subset V' C V, the tester-set of V', denoted by u='V', is
defined as
p~ WV ={v|veV and {v,v'} € E for some v € V'} - V'

Lemma 2 [16] A system G = (V, A) is L-diagnosable if and only if

V/
YW CVIV #¢=> % + V] > ).

Theorem 1 The proposed [aull-lolerant n-cube is (n + 2)-diagnosable.

. 1% _
Proof. We prove the theorem by showing that for any non-empty subset V'’ of V, % +p V| >
n + 2 will be satisfied. Then by Lemma 2, the system is (1 + 2)-diagnosable.

Case 1: V' contains only primaries.

Without considering the V’’s additional testers due to the spare nodes and extra links, we
have @ + |~'V’/| > n by Lemmas 1 and 2. Without loss of generality we can always assume
vg=0---0000 € V'.

Case 1.1: vy = 0---0111 € V'. Then p~'V’ will have 2 more nodes, 0---0Sy (testing vg)
and 0---0S; (testing v1). Therefore we have @ + V| > n+2.

Case 1.2: vy = 0---0111 € V’. Then 'V’ will also have 2 more nodes, 0---0Sy and vy
(both testing vg). Thus we have % + gV > n+2.

Case 2: V' contains only spares.

All spare nodes form an (n—2)-cube by themselves. So by Lemmas 1 and 2, ‘LQI‘+|/L_1V’| > n—2,
where 11V’ only takes spares into account. Now pick any spare vg € V'. vy will have 4 more
primaries testing it. Therefore, we have ‘%' +lp V| >n—-2+4=n+2.

Case 3: V' contains both primaries and spares.

Let V' =V, UV, where V], V is a subset of primaries and spares, respectively. By Lemmas 1
and 2, we have @ +|p V] > n and % +|p VY| > n—2, where = 'V} only contains primaries
_ . . _ _ . V! _
and £~V only contains spares. Since p~ V) N p V] = ¢, it must follow that |2—‘ + | V| >
2n — 2 > n + 2 for n > 4, which is a satisfied condition. O
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V Conclusion

We have proposed a strong fault-tolerant hypercube structure that uses spare nodes and links. It
needs relatively very little hardware support and yet has been shown to achieve satisfactory result:
the first faulty node can be fully recovered no matter where it occurs, the second faulty node can
be recovered at over ninety percent ol locations. The advantage of our proposed structure is that it
makes use of the unused extra link-ports in nodes of the hypercube to obtain the wanted topology.
Since the extra link-portls are previously manuflactured, the hardware support for oblaining fault-
tolerance is minimal and the constructing process very easy. Besides the spare nodes, the only
hardware needed for constructing the proposed system are extra links. A cost analysis shows that
the total number of links of the system is (5n + 10)2"~3, including both primary and spare links.
This is about one fourth of the links needed by an equal sized fault-tolerant hypercube structure
proposed earlier in [20].

We have also shown that the proposed structure enhances the diagnosability of the hypercube
system. It has been shown thal the diagnosabilily ol the structure is increased to n 4+ 2, while an

ordinary n-dimensional hypercube has diagnosability 7.
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